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Abstract

This project discusses the functional role of genome organization in regulating gene

expression and coordinating biological processes, with a focus on the spatial organi-

zation of chromatin in budding yeast. Two methods, microarray and RNA-seq, were

used to analyze gene expression and spatial organization data, and GO enrichment

analysis was used to investigate the relationship between chromosome structure and

biological function. The study found that genes in spatial proximity cross-link together

more often when they have similar expression profiles or are functionally related. The

spatial organization of the yeast genome was found to be non-random and facilitates

the coordinated expression of functionally related genes. RNA-seq gene expression data

confirms the results, providing further evidence for the significant relationship between

co-expression of genomic loci and proximity in nuclear space. The findings have implica-

tions for understanding the mechanisms of gene regulation and transcriptional control,

with potential applications in disease diagnosis and therapeutic strategies.

Keywords: Bioinformatics, Saccharomyces cerevisiae, RNA-seq, Microarray, 4C
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1. Introduction

The recent advances in functional genomics studies and chromatin conformation-

capturing techniques have provided many ways to study and analyse DNA structure

and nuclear organization. These technologies allow a better understanding of the rela-

tionship between chromosome structure and biological function [1]. Furthermore, These

techniques have provided new insights into the mechanisms of gene regulation and tran-

scriptional control, and shed light on the importance of the spatial organization of the

genome in these processes [2]. As these techniques continue to evolve and improve, we

can expect to gain even deeper insights into the mysteries of the genome and its role in

health and disease.

In recent years, researchers have been intensively studying the importance of ge-

nomic architecture and the arrangement of the genes within the genome. As well as the

reasons behind the formation of this typical organization. It has been confirmed that



the 3D organization of the eukaryotic genomes and their chromosomal conformation

plays a crucial role in the gene activity and its mechanism of working, which can be

proved by looking at the chromosomal spatial distribution and the clustering of diverse

genomic regions with similar expression patterns [3][4][5][6]. It became evident that the

special arrangement of genes and chromosomes is non-random, and genomes tend to

have specific organizations and regions during their cell cycle that is more efficiently

transcribed [7]. The regulation of transcription in eukaryotes is a complex process

that involves several levels of coordination. This process begins with the binding of

regulatory proteins to specific DNA sequences, which can either enhance or repress

transcription. These regulatory proteins can interact with each other to form protein

complexes, which can further modify the activity of transcription factors [8][9].

Furthermore, the 3D organization of the genome plays a crucial role in regulating

transcription. The way that DNA is packaged and organized in the nucleus can deter-

mine which genes are accessible to transcriptional machinery and which ones are not.

Recent research, such as the study on the 3D organization of the yeast genome and its

correlation with co-expression and functional relations between genes, has demonstrated

the importance of this 3D organization in transcriptional regulation. Researchers found

that genes with similar expression patterns tended to be located in close proximity to

each other in the 3D space of the nucleus. This suggests that the 3D organization of

the genome reflects functional relationships between genes and can be used to predict

gene expression patterns. Additionally, it was found that genes that were physically

clustered in the genome tended to be co-regulated, indicating that the 3D organization

of the genome is directly involved in regulating transcription[4].

Studies using several experimental methods have provided unprecedented insights

into the relationship between the co-expression of genes that are in spatial proximity

which further showed a relation with genes’ functional properties. For example. It was

shown that regions like centromeres, telomeres, and tRNAs tend to be co-localized [8].

Also, co-localization was presented for highly expressed genes, genes that are function-

ally related (based on gene ontology, GO terms), and co-regulated genes. Moreover,

genes with shared expression levels tend to be in special proximity to facilitate their

co-transcription by shared transcription features and optimize chromatin remodeling

[9]. The three-dimensional arrangement of DNA can influence the accessibility of genes

to regulatory proteins and RNA polymerase, impacting their expression levels [10]. To

gain insights into the functional role of DNA spatial organization, researchers often

employ Gene Ontology (GO) terms and enrichment analysis. These methods allow for

the identification of functional terms and biological processes that are associated with

genes or gene sets, providing valuable insights into the underlying mechanisms of gene

regulation and expression [8][11][12]. Enrichment analysis can be used to identify GO
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terms that are associated with genes that are spatially co-localized within the nucleus,

giving information about the functional roles of different nuclear compartments and

their interactions.

Various high-throughput technologies have emerged for the analysis of the 3D or-

ganization of the genome, including 4C analysis, RNA-seq, and microarray. These

technologies have provided valuable insights into the relationship between the 3D or-

ganization of the yeast genome and the co-expression and functional relations between

genes.

The recent advances in chromatin conformation capture (3C) techniques and its

derivative (4C and HI-C) allowed for more accurate investigation and description of

genomic spatial organization. These techniques produced a huge amount of genomic

data which can provide us with a better understanding of the cellular function and gene

regulation in the 3D genome architecture. They enable us to study the chromosome

organization in eukaryotic cells by looking at chromatin interactions in gene contact

networks[13][14].

RNA-seq is another widely used technology for analyzing gene expression. It involves

sequencing of RNA molecules in a sample, providing information about the expression

levels of individual genes [15]. RNA-seq has been used to study the relationship between

gene expression and the 3D organization of the yeast genome. In this project it will

be shown that genes that are co-expressed tend to be located close to each other in

the 3D space of the genome, suggesting that the spatial organization of the genome is

important for gene co-expression.

Microarray analysis is also a powerful tool for analyzing gene expression. It involves

the hybridization of labeled RNA or DNA to a microarray containing thousands of

probes that are specific to individual genes[1]. Microarray analysis has been used to

study the relationship between the 3D organization of the yeast genome and gene

expression. and the results will show that genes that are located close to each other in

the 3D space of the genome tend to have similar expression profiles.

The spatial arrangement of genes is a crucial factor to consider in bioinformatics

studies, as it can have a significant impact on gene expression, regulation, and disease

development. It can provide insights into the molecular mechanisms underlying various

diseases. This is particularly true in diseases such as muscular dystrophy and Rett

syndrome, where the conformation of the genome in the nucleus and rearrangements of

the chromosome play a significant role. Mutations that affect the spatial organization

of the genome can lead to abnormal gene expression and regulation, contributing to

the development of these diseases. Additionally, the creation of the antibody repertoire

during immunological development involves the rearrangement of the chromosome, and

mutations that affect the spatial organization of the genome can disrupt this process,

3



leading to immune system dysfunction. Understanding the spatial organization of the

genome is therefore critical to gaining important insights into the molecular mechanisms

underlying various diseases and contributing to the development of effective treatments

[8].

The project investigated the functional role of intra-phase genome organization by

analyzing the spatial organization of chromatin in cell and gene-expression datasets us-

ing computational tools and software programs. The results showed that the measured

expression levels of genes with contact links were highly correlated, indicating a signifi-

cant relation between the co-expression of genomic loci and proximity in nuclear space.

Additionally, the correlation was higher when genes had stronger links or higher count

frequency. Further analysis demonstrated that genes in spatial proximity cross-link to-

gether more often when they have similar expression profiles or are functionally related.

Results also demonstrated the enrichment of inter-chromosomal links connecting loci

of genes with the same GO term. This suggests that the spatial organization of the

yeast genome is non-random and facilitates the coordinated expression of functionally

related genes. These findings provide further evidence for the functional role of genome

organization in regulating gene expression and coordinating biological processes. The

project’s algorithm and code can be used to further investigate the relationship be-

tween genome organization and its role in gene expression and regulation and between

the coordinated expression of functionally related genes in spatial proximity.

2. Methodology

This section will discuss our approach to analyse the experimental data of intra-

chromosomal contacts in the budding yeast found by Duan et al. As well as identify

the groups of genes that are co-expressed and may be involved in common biological

processes.

2.1. Enrichment Analysis on Gene Sets using GO

One of the primary applications of the Gene Ontology (GO) is to conduct en-

richment analysis on sets of genes. This involves determining which GO terms are

over-represented (or under-represented) based on annotations for a given gene set. For

instance, if a group of genes is found to be up regulated under specific conditions, an

enrichment analysis using GO can identify the relevant over-represented GO terms.

To gain insights into gene functions and their relationships, The enrichment anal-

yses was directly performed from the home page of the Gene Ontology Consortium

(GOC) website, which connects to the analysis tool from the PANTHER Classification

System [16].The PANTHER Classification System is a comprehensive tool for biologists
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to analyse genome-wide data from sequencing, proteomics, or gene expression exper-

iments. It combines gene function, ontology, pathways, and statistical analysis tools,

and is built using 82 complete genomes organized into gene families and subfamilies.

The PANTHER system is maintained up-to-date with GO annotations, allowing for

accurate and relevant analysis of gene sets [17].

The GO enrichment analysis tools were implemented as follows: Firstly, the tool

was provided with the names of genes to be analyzed, which were obtained by forming

gene pairs from the analysis of 4C data. To ensure the accuracy of the analysis, the gene

pairs list was filtered using Linux commands to only include unique genes. The resulting

list was then used for the GO enrichment analysis. Next, the GO aspect (molecular

function, biological process, cellular component) was selected for the analysis, based on

the species of the genes used in the project, which was Saccharomyces cerevisiae.The

results table provided a detailed summary of significant shared GO terms or their

parents that were used to describe the entered set of genes. It included information

on the background and sample frequency, expected p-value, over/under-representation

of each term, the Fold Enrichment of the genes observed in the uploaded list over the

expected, and p-value [16].

Background frequency and sample frequency were defined as the number of genes

annotated to a GO term in the entire background set and the number of genes annotated

to that GO term in the input list, respectively. If there were more genes observed

in the uploaded list than expected for a particular biological process, it indicates an

over-representation (+) of genes. Conversely, if there were fewer genes observed than

expected, it indicates an under-representation (-) of a term. In other words, If the

Fold Enrichment( for a particular GO term is greater than 1, it suggests that the genes

associated with that term are more common in the set of deferentially expressed genes

than would be expected by chance [16].

P-value was defined as the probability or chance of seeing at least x number of

genes out of the total n genes in the list annotated to a particular GO term, given the

proportion of genes in the whole genome that are annotated to that GO Term. That

is, the GO terms shared by the genes in the list were compared to the background

distribution of annotation. The closer the p-value was to zero, the more significant the

particular GO term associated with the group of genes was (the less likely the observed

annotation of the particular GO term). A Small p-value indicates that the result is non-

random and potentially interesting. P-Values were calculated by the Binomial statistic

using the following equation:

P − value =
∑(

K

k

)
p(c)k(1− p(c))K−k
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It is a statistical measure that helps determine the probability of obtaining a certain

number of successes (i.e., genes annotated to a particular GO term) out of the total

number of trials (i.e., genes in the user’s list) based on the proportion of successes in

the population (i.e., genes in the whole genome with GO annotations) [16].

The data was pre-processed using linux commands to include specific GO terms,

and a Python code was used to interpret the results. The code incorporated both

the ratio of background frequency to sample frequency and p-values to generate a

heatmap. The code used for this analysis is accessible through the following link

https://github.com/chaimae-mr/Go-term-analysis.git.

2.2. GO-slim terms Enrichment Analysis

To determine the enrichment of GO-slim terms, the method involves counting the

number of contacts (4C links) between all the genes belonging to each term and com-

paring it to the number expected for gene interactions that do not depend on functional

category. The first step was to find a unique list of loci and their corresponding genes

with a 500 offset. This list, along with the list of interacting loci from the 4C data

analysis, was used in a C code to find all the interacting genes and save them to a file.

This was done multiple times each time specifying a different frequency threshold (e.g.,

>=5).

The following analysis was then performed. First, all genes associated with a given

GO term were found. Then, the number of links between genes in the original set was

calculated. Following that, the expected number of links between the simulated set of

genes was also calculated. The expected number of links was obtained through Monte

Carlo simulations, where for each term, 100 groups of genes are randomly selected from

the genome. The number of genes in each random group was equal to the number of

genes annotated by the term of interest. Finally, the standard deviation of the simulated

set of genes was computed. The 4C links are counted between all pairs of genes in each

randomly selected group, and the average and distribution over the 100 simulations

define the expected statistical properties of links for each GO category. All of the

results were output to a file, including the GO term, the number of genes, the expected

number of links, the simulated number of links, and the standard deviation. This

allowed for easy access and interpretation of the results. The results were interpreted

in heat maps based on the mean (the number of expected links divided by the number

of simulated links) and z-score The source code along with examples for this analysis

is available at the following link https://github.com/chaimae-mr/Go-term-analysis.git.

2.3. Yeast Microarray Gene Expression Data and Co-Expression Analysis

The experimental data for genome-wide contacts in yeast were obtained from the

work of Duan et al [10]. The experimental process of generating 4C contact data in-
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volves several steps. Firstly, the chromatin of interest is cross-linked with formaldehyde

to capture spatially proximal genomic regions. The cross-linked chromatin is then di-

gested using a restriction enzyme such as HindIII, which cuts the chromatin at specific

recognition sites [8] [14]. Next, the digested chromatin is ligated together to form cir-

cular DNA fragments(fragments from both ends of the cross-linked interacting DNA

pair), which contain the interacting genomic regions. The circularized DNA fragments

are then amplified by PCR using locus-specific primers, which are designed to target

the genomic region of interest. The resulting PCR products represent a library of DNA

fragments that contain the interacting regions, which can be sequenced to obtain 4C

contact data. The sequencing data is then processed and analyzed to identify the ge-

nomic regions that interact with the locus of interest, and to quantify the frequency of

interactions between each pair of regions . The frequency is the number of sequenced

fragments for each contact and is reported as the “count frequency” that is interpreted

as a measure of spatial proximity between genomic loci [8] [14].

To ensure the accuracy and reliability of 4C contact data, quality control and nor-

malization procedures are typically employed. For instance, PCR amplification effi-

ciency and sequencing depth can introduce technical biases that need to be accounted

for in the data analysis. Also , to eliminate pair reads that cannot be mapped to the

genome or those that were ligated randomly in the experimental process Therefore,

it is essential to include appropriate controls and normalization strategies to obtain

high-quality 4C contact data [8].

Furthermore, The 4C data identifies spatial contacts in the yeast genome, includ-

ing both intra- and inter-chromosomal links. The co-expression of genes on the same

chromosome may be affected by cis-effects. And so, this analysis focuses on intrachro-

mosomal links to eliminate this influence. The yeast gene expression data were obtained

from the Gene Expression Omnibus (GEO) website, which is a public repository of gene

expression data. Specifically, the data was collected using the Affymetrix yeast platform

S98, which is a microarray technology that allows for the simultaneous measurement

of the expression levels of thousands of genes. The dataset covers a wide range of

experimental conditions, and a total of 1496 samples were used in the analysis [18].

To prepare the data for analysis, the samples were first normalized by converting the

raw data to the linear scale and then dividing by the sample mean. This normalization

step helps to correct for technical variation between samples, ensuring that the data is

comparable across different experiments. To quantify the co-expression of two genes, the

Pearson correlation coefficient was calculated between the corresponding probes across

all 1496 samples. The Pearson correlation coefficient measures the linear relationship

between two variables, in this case, the expression levels of two genes. A high correlation

coefficient indicates that the expression levels of the two genes are closely related, while
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(a) Workflow for calculating the average correlation
between gene pairs

(b) Identifying Genes within a Specific Genomic Sep-
aration: Workflow for File Creation and Characteriza-
tion by Offset Value

Figure 1: This presents the main working principle of the developed codes.

a low correlation coefficient indicates little or no relationship. This calculation was

performed for all pairs of genes in the dataset, allowing for the calculation of the

genome-wide correlation average, which provides a measure of the overall co-expression

pattern in the yeast genome. Additionally, the average correlation for linked genes was

calculated at different contact thresholds (offsets).

The code for this analysis can be found in the given linkhttps://github.com/chaimae-

mr/SeniorProject-II.git. The following describes the main working principle to find the

average correlation for linked genes and interpret the results: ( )

• The list of locus pairs that are in contact, along with their position and frequency

count information was obtained. It was created using the 4C analysis method

based on the HINDIII library of experimental data.

• The 4C list was noticed to have 240,628 loci pairs in which there are only 4010

unique loci values. Using Linux commands, these values were extracted for better

and more efficient data processing.

• A list of genes was obtained from the GEO Website of the gene’s position in

the chromosome and coordinate range. the inter-chromosomal contacts were pro-

cessed by mapping them to the corresponding genes.
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• All the genes that fall within a specific genomic separation (offset) from the con-

tact position were identified and saved into files. These files are characterized by

the offset value. A simple workflow of this step is shown in Figure 1b.

• The co-expression (correlations between expression levels) of the corresponding

genes of the locus pair was then determined, and the average correlation at that

specific offset for the list of locus pairs was calculated. A simple workflow of this

step is shown in Figure 5.

• The previous step was performed multiple times for different offset values ranging

from 100 to 10,000 bp to understand the dependence of average correlation on

the size of the offset.

• The results were then interpreted using Python packages like matplotlib . Average

correlation vs. offset and Average correlation vs. count frequency (specifically at

500 offset)

2.4. RNA-seq gene expression data and co-expression analysis

RNA-seq is a high-throughput sequencing technique used to investigate and quan-

tify gene expression at the transcriptome level. RNA-seq works by converting RNA

molecules into complementary DNA (cDNA) fragments, which are then sequenced us-

ing high-throughput sequencing platforms such as Illumina [19]. The resulting sequence

data is then mapped to a reference genome or transcriptome to determine the abun-

dance of transcripts in the sample. we performed RNA-Seq data analysis using a

pipeline that involves several steps. The used pipeline can be accessed through this

linkthttps://github.com/chaimae-mr/SeniorProject-II.git.

In order to obtain the RNA-seq expression data for S. cerevisiae, the Gene Expres-

sion Omnibus (GEO) database was used [18]. The data was downloaded from three

GEO platforms, each containing different experimentation conditions and various sam-

ples for each series. A total of approximately 1500 SRA accession IDs were randomly

selected and downloaded. The RNA-seq data was processed using a collection of tools

known as the SRA-Toolkit. This software suite, designed by the National Center for

Biotechnology Information (NCBI), provides a means of accessing and utilizing sequence

data stored in the Sequence Read Archive (SRA). The SRA-Toolkit was used to down-

load and retrieve SRA data in the compressed SRA format. The main two commands

used are prefetch and fast-dump. To download the sequence files in compressed SRA

format, we used the ”prefetch” operation with the SRA accession IDs obtained from

GEO, while fastq-dump retrieved the SRA fastQ files, which were used for mapping

and transcript quantification. For gene quantification, the RNA-seq by Expectation
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Maximization (RSEM) package tool was used, which is an open-source software tool

for gene quantification using single-end or paired-end RNA-seq data. RSEM uses the

powerful and efficient alignment software Bowtie to map the fastQ files to the yeast

reference genome [19].

Two main functions of RSEM were used in our analysis: rsem-prepare-reference

and rsem-calculate-expression. First, the yeast reference genome was prepared by ob-

taining the FASTA-formatted file from Ensembl genome browser release 82. Then,

RSEM was used to calculate the gene expression levels from the mapped reads, with

the output given as gene read counts. The read counts were normalized using two

different methods, Transcripts Per Kilobase Million (TPM) and Fragments Per Kilo-

base Million (FPKM) [19]. To create a matrix table of genes (rows) and sample counts

(columns), all the read counts according to their gene correspondence were merged.

Using the Output file that consists of 6041 genes each has 1500 read counts and was

normalized by (TPM) method, the correlation coefficient was calculated between each

pair of genes. The following link https://github.com/chaimae-mr/SeniorProject-II.git

includes the code that was used to process gene expression data and calculate the

pairwise correlation coefficients (co-expression ) between each pair of genes using the

Pearson correlation coefficient method.

The output file consisted of 18,243,820 pairs of genes with their standardized cor-

relation. This was then used to perform the co-expression analysis using 4C contact

data, the same way it was done using microarray gene expression data.

3. Results

3.1. Inter-chromosomal Contacts and Co-expression of Genes

To investigate the relationship between co-expressions of interacting genes and inter-

chromosomal contact distance, we conducted an analysis of the correlation coefficient

between interacting loci and the whole-genome average. We measured the average

Pearson correlation coefficient of expression level between genes using 1496 Affymetrix

Yeast S98 microarray samples covering a wide range of experimental conditions obtained

from the GEO database. Using 4c experimental data from the HINDIII library, we

calculated the average correlation of gene pairs located within a specific offset between

inter-chromosomal contacts. Figure 2a shows the correlation coefficient plotted against

different offset sizes to examine the effect of the offset size on the correlation coefficient.

Results shows that the correlation between linked genes was highest for small offsets

(<500 bp) and decreased as the offset increased. Additionally, we found that the

correlation coefficient between linked genes (0.1196) was significantly higher than the

genome-wide average (0.0843), indicating that linked genes have a higher correlation

than genes located farther apart on the genome.
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(a) (b)

Figure 2: (a) The average correlation of genes as a function of the distance (offset) from an inter-
chromosomal contact using HINDIII experimental data from 1496 Affymetrix Yeast S98 microarray
samples .(b) The average correlation between linked genes as a function experimental count frequency
threshold of the corresponding links.

Furthermore, we also examined the relationship between gene co-expression and

proximity in the nuclear space by analyzing the average co-expression for genes con-

nected by links as a function of the threshold count frequency in the 4C experiment

Figure 2b. The results indicates that there is a significant association between gene co-

expression and proximity in the nuclear space, which is demonstrated by the increase

in correlation with the frequency of the experimental fragment count for the contact.

In other words, the correlation between linked genes increases monotonically with the

frequency of the experimental fragment count for the contact. This implies that the

likelihood of gene co-expression is higher for genes that are in close proximity to each

other in the nuclear space, as indicated by the higher correlation between linked genes.

To confirm our results, the same analysis was performed on different data-sets using

RNA-seq gene expression data instead of yeast gene expression data from Microarray to

calculate the average correlation between linked genes. As shown in 3a , the correlation

between linked genes was highest for small offsets (< 500 bp) and decreased as the

offset increased. Furthermore, we discovered that the correlation coefficient between

linked genes (0.0930) was significantly higher than the genome-wide average (0.0843)

which is comparable to the genome-wide average (0.0841) from Microarray. Figure 3b

also illustrates that the correlation between linked genes increases monotonically with

the frequency of the experimental fragment count for the contact, conforming that the

average correlation between linked genes will be higher when genes have higher count

frequency and stronger links.

These results successfully validate the findings reported in, which analyzed the rela-
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(a) (b)

Figure 3: (a) The average correlation of genes as a function of the distance (offset) from an inter-
chromosomal contact using RNA-Seq gene expression data. (b) The average correlation between
linked genes as a function experimental count frequency threshold of the corresponding links.

tionship between the experimental data of intrachromosomal contacts in budding yeast

using Microarray Gene expression data by Duan et al. In addition, performing the same

analysis on a different gene expression dataset obtained using RNA-seq provides fur-

ther evidence that the measured expression levels of genes with contact links are highly

correlated, indicating a significant relationship between co-expression of genomic loci

and proximity in nuclear space.

3.2. Inter-Chromosomal Contacts and Go-slim Terms

To further demonstrate that genes in spatial proximity cross-link together more often

when they have similar expression profiles or are functionally related, we investigated

whether the observed chromosomal contacts were related to the biological functions of

the affected loci. To achieve this goal, we analyzed the distribution of inter-chromosomal

contacts within groups of genes that shared similar Gene Ontology (GO) annotations.

The Gene Ontology (GO) classification system provides a standardized vocabulary

for describing the functions, processes, and components of genes and their products

across different species. GO terms are categorized into three main domains: Biological

Process, Molecular Function, and Cellular Component. The Biological Process domain

describes the biological objective to which the gene or gene product contributes, The

Molecular Function domain is defined as the biochemical activity of a gene product,

including specific binding to ligands or structures, and The Cellular Component do-

main refers to the place in the cell where a gene product is active and reflects our

understanding of eukaryotic cell structure.

In our analysis, Each gene is assigned one or more GO terms that describe its bio-

logical function or the biological process it participates in. By comparing the number
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of contacts within groups of genes with similar GO annotations to randomly selected

groups with the same number of genes, we were able to assess whether the observed

inter-chromosomal links were enriched or depleted among different GO terms. results

showed that most of the terms in each of the three main domains of molecular func-

tion, biological process, and cellular component were significantly enriched with inter-

chromosomal contacts.

The enrichment of inter-chromosomal links among different Gene Ontology (GO)

terms at different threshold count frequencies is shown in Figure 4. The data used for

this analysis was obtained from both HINDIII and EcoRI libraries. The figure shows the

ratio of the observed number of linked genes for each GO term to the number predicted

from Monte Carlo simulation. The color represents the ratio, where blue and purple

indicate high ratios (enriched terms), and orange and red indicate low ratios (depleted

terms). The saturation of the color indicates the significance of the ratio (z-score),

as shown in the legend. The GO terms are classified into the three main domains -

biological process, molecular function, and cellular component - and ordered based on

the number of genes in each domain. The results show that most of the terms in each of

the three domains are significantly enriched with inter-chromosomal contacts, and the

enrichment ratio of different terms is more pronounced at higher threshold frequencies

defining the strengths of contacts. This analysis provides valuable insights into the

biological functions associated with the chromosomal contacts and helps to elucidate

the complex regulatory mechanisms underlying gene expression.

In Enrichment Analysis on Gene Sets using GO, a heat map is yet to generated

to visualize the distribution of data. However, from he data obtained for functional

enrichment analysis using The PANTHER Classification System indicates that the up-

loaded list contained a larger number of genes related to a particular biological process

than would be expected by chance. The ratio of observed to expected genes was found

to be high, and the corresponding p-values were small, suggesting that the enrichment

of these genes in the biological process is statistically significant for the terms that were

analysised in Figure 4.

Both Enrichment analyses provided evidence that the interchromosomal DNA in-

teractions are not random at the scale of individual genes. This implies that the regula-

tion of gene expression and the organization of chromosomal architecture are intricately

linked. The observed non-random interactions suggest that certain biological functions

or processes require the coordination of gene expression from multiple chromosomal

regions. This finding has significant implications for our understanding of gene regula-

tion and the organization of the genome, and it provides a foundation for future studies

aimed at elucidating the underlying mechanisms governing these interactions.

Our results partially validate the findings reported in , as we observed a similar
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Figure 4: The Heatmaps shows the distribution of inter-chromosomal contacts between groups of
genes based on Gene Ontology (GO)-slim terms. Colors represent the ratio of observed linked genes
to predicted numbers from Monte Carlo simulation, with blue/purple indicating enriched terms and
orange/red indicating depleted terms. The saturation indicates the significance.The GO terms are
categorized into three main domains and are sorted by the number of genes.
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trend in Go enrichment analysis. However, some differences were noted, which may be

attributed to errors in the code used for the analysis or the gene list obtained from the

GEO Website, including the gene’s position in the chromosome and coordinate range

4. Future work

To further discusses the functional role of genome organization in regulating gene

expression. We can extend the work to compare the studied budding yeast genome to

other related genomes using Hi-C method.

The Hi-C contact data is a type of genomic data that describes the three-dimensional

structure of chromatin in the nucleus. This information is obtained experimentally

through a protocol that involves several steps. The first step is cross-linking, where cells

are treated with formaldehyde to create covalent bonds between proteins and DNA. This

step ensures that the chromatin structure is preserved and that the interactions between

different regions of the genome are captured.After cross-linking, the chromatin is frag-

mented into smaller pieces using either restriction enzymes. This step breaks the chro-

matin into smaller pieces that can be sequenced more easily. The fragmented chromatin

is then treated with ligase, which joins the cross-linked DNA fragments together. This

step creates chimeric DNA molecules that represent the interactions between different

regions of the genome [14][20][13]. The cross-links are then reversed, and the chromatin

is purified to remove any contaminants. The purified chromatin is then processed to

create a sequencing library. The library is sequenced on a high-throughput sequencing

platform, which generates millions of short reads that represent the interactions be-

tween different regions of the genome[20]. The sequenced reads are then mapped to a

reference genome, and Hi-C contact maps are generated using bioinformatics tools. The

Hi-c contact data/matrix was obtained as shown in Figure 3. It summarizes the main

working principle in analysing the raw experimental data. The processing pipeline can

be accessed thought the following link:https://github.com/chaimae-mr/SeniorProject-

II.git.

According to [21] Hi-C contact data can be processed as follow :

• Raw sequencing reads along with their quality scores are obtained from the Gene

Expression Omnibus (GEO) database in FASTQ format, using SRA IDs and

SRA-Toolkit.

• The raw sequences are aligned to the reference genome sequence and the results

are often stored in the Sequence Alignment Map (SAM) or Binary Alignment Map

(BAM) format. To store Hi-C data at the alignment level, two important aspects

are often considered, chimeric alignments (increase the number of informative
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Figure 5: Workflow to Obtain a Hi-C contact matrix.The raw sequences are first aligned to the reference
genome sequence and the results are often stored in the Sequence Alignment Map (SAM) or Binary
Alignment Map (BAM) format, The alignments in the SAM/BAM files are processed further into a
contact list file that records all the pairs of aligned positions representing valid interacting loci. The
entries in the contact list file are aggregated to genomic bins to create a contact matrix file. The latest
formats like .hic and .mcool are normalized contact matrices

reads going into the contact matrix) and independent alignment of the two ends (

map the two ends separately as if they were unrelated single-end data, and merge

them later in some way).

• A contact list, or a “pairs” file, stores filtered pairwise interacting loci at the read

alignment level. A pair file is typically created from a SAM/BAM file using spe-

cialized software (pairtools) that can extract paired-end reads from and generate

a separate file that contains information about the pairs.

• A contact matrix is created by counting the read pairs in a contact list file in .hic

format into genomic bins (at a given resolution). The genomic bins or resolutions

of a matrix can be kilobases to megabases long, or they may correspond to restric-

tion fragments. The rows and columns of the matrix represents genomic loci.The

two dimensions of the matrix correspond to two interacting loci, each axis rep-

resenting a genome. Each element of the matrix (also called a pixel) reflects the

frequency of interactions between two genomic regions. The dense matrix form

is used for high-resolution matrices for analyses focusing on a small region. A

sparse matrix form stores only the elements with a nonzero value, in the format

of ¡bin index i¿¡bin index j¿¡value¿ for each element

• Convert the Hi-C contact matrix into a format that includes the positions of the

loci. This can be done using BEDtools or HIcexplorer, which can generate .bed

files containing the genomic coordinates of each locus in the matrix.

• Use of awk and midpoint functions (linux command) to get the exact interacting
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position .

5. Conclusion

In conclusion, our study demonstrates the functional role of genome organization

in regulating gene expression and coordinating biological processes. We have shown

that genes in spatial proximity cross-link together more often when they have simi-

lar expression profiles or are functionally related. Furthermore, we have found that

the spatial organization of the yeast genome is non-random and facilitates the coor-

dinated expression of functionally related genes. Our analysis also reveals that the

correlation between linked genes is highest for small offsets and decreases as the off-

set increases, indicating that linked genes have a higher correlation than genes located

farther apart on the genome. Additionally, we have confirmed our results using RNA-

seq gene expression data, providing further evidence for the significant relationship

between co-expression of genomic loci and proximity in nuclear space. These findings

have implications for our understanding of the mechanisms of gene regulation and tran-

scriptional control and may help to elucidate the role of genome organization in health

and disease. Overall, our study provides a framework for further investigation into the

relationship between genome organization and gene expression and regulation.As more

high-resolution genome-wide data becomes available, our understanding of the spatial

aspect of genome regulation will undoubtedly continue to deepen.
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